Learning Harmonic Relationships in Digital Audio with Dirichlet-Based Hidden Markov Models
نویسندگان
چکیده
Harmonic analysis is a standard musicological tool for understanding many pieces of Western classical music and making comparisons among them. Traditionally, this analysis is done on paper scores, and most past research in machine-assisted analysis has begun with digital representations of them. Human music students are also taught to hear their musical analyses, however, in both musical recordings and performances. Our approach attempts to teach machines to do the same, beginning with a corpus of recorded Mozart symphonies. The audio files are first transformed into an ordered series of normalized pitch class profile (PCP) vectors. Simplified rules of tonal harmony are encoded in a transition matrix. Classical music tends to change key more frequently than popular music, and so these rules account not only for chords, as most previous work has done, but also for the keys in which they function. A hidden Markov model (HMM) is used with this transition matrix to train Dirichlet distributions for major and minor keys on the PCP vectors. The system tracks chords and keys successfully and shows promise for a real-time implementation.
منابع مشابه
Learning Infinite Hidden Relational Models
Relational learning analyzes the probabilistic constraints between the attributes of entities and relationships. We extend the expressiveness of relational models by introducing for each entity (or object) an infinite-state latent variable as part of a Dirichlet process (DP) mixture model. It can be viewed as a relational generalization of hidden Markov random field. The information propagates ...
متن کاملData-Driven Recomposition using the Hierarchical Dirichlet Process Hidden Markov Model
Hidden Markov Models (HMMs) have been widely used in various audio analysis tasks such as speech recognition and genre classification. In this paper we show how HMMs can be used to synthesize new audio clips of unlimited length inspired by the temporal structure and perceptual content of a training recording or set of such recordings. We use Markov chain techniques similar to those that have lo...
متن کاملIclr 2017 B Ioacoustic Segmentation by Hierarchical D Irichlet Process Hidden M Arkov Model
Understanding the communication between different animals by analysing their acoustic signals is an important topic in bioacoustics. It can be a powerful tool for the preservation of ecological diversity. We investigate probabilistic models to analyse signals issued from real-world bioacoustic sound scenes. We study a Bayesian non-parametric sequential models based on Hierarchical Dirichlet Pro...
متن کاملHidden Topic Markov Models
Algorithms such as Latent Dirichlet Allocation (LDA) have achieved significant progress in modeling word document relationships. These algorithms assume each word in the document was generated by a hidden topic and explicitly model the word distribution of each topic as well as the prior distribution over topics in the document. Given these parameters, the topics of all words in the same docume...
متن کاملBayesian non-parametric hidden Markov models with applications in genomics
We propose a flexible non-parametric specification of the emission distribution in hidden Markov models and we introduce a novel methodology for carrying out the computations. Whereas current approaches use a finite mixture model, we argue in favour of an infinite mixture model given by a mixture of Dirichlet processes.The computational framework is based on auxiliary variable representations o...
متن کامل